オンライン家庭教師生徒募集中!詳しくはこちらから!

啓林館:未来へ広がる数学3

このページは、啓林館:未来へ広がる数学3
 7章 三平方の定理
教科書に完全対応の問題集|教科書ぴったりトレーニング
教科書に対応した数学の問題集|教科書ぴったりトレーニングの紹介 こんにちは、みなさん!今回は中学生の...

文字数が多く、重くなるのでページを分割しています。
各章は下のリンクまたはページ下の「次へ」をクリックしてください。
啓林館中3 1章 式の展開と因数分解
啓林館中3 2章 平方根
啓林館中3 3章 二次方程式
啓林館中3 4章 関数y=ax²
啓林館中3 5章 図形と相似
啓林館中3 6章 円の性質
啓林館中3 7章 三平方の定理
啓林館中3 8章 標本調査とデータの活用
 



7章 三平方の定理

1節 直角三角形の3辺の関係

 
1 三平方の定理

p.184 問1\(\begin{split}{\small (1)}~5\sqrt{5}~{\rm cm}\end{split}\)  \(\begin{split}{\small (2)}~4~{\rm cm}\end{split}\)

■ 同じタイプの例題解説
  » 直角三角形と三平方の定理
p.184 問2\(\begin{split}{\small (1)}~5~{\rm cm}\end{split}\)  \(\begin{split}{\small (2)}~2~{\rm cm}\end{split}\)

■ 同じタイプの例題解説
  » 直角三角形と三平方の定理
p.185 問3[証明] \(\triangle {\rm ABC}\) と \(\triangle {\rm DEF}\) について、
仮定より、
 \({\rm BC=EF}=a\cdots{\large ①}\)
 \({\rm AC=DF}=b\cdots{\large ②}\)
また、\(\triangle {\rm DEF}\) は直角三角形より、三平方の定理が成り立つので、
 \({\rm DE}^2=a^2+b^2\)
\(a^2+b^2=c^2\) が成り立つので、
 \({\rm DE}^2={\rm AB}^2\)
よって、
 \({\rm AB=DE}\cdots{\large ③}\)
①、②、③より、3組の辺がそれぞれ等しいので、
 \(\triangle {\rm ABC}\equiv\triangle {\rm DEF}\)
合同な図形では対応する角がそれぞれ等しいので、
 \(\angle{\rm ACB}=\angle{\rm DFE}=90^\circ\)
したがって、\(\triangle {\rm ABC}\) は直角三角形となる [終]

■ 同じタイプの例題解説
  » 三平方の定理の逆
p.186 問4 イ、エ

■ 同じタイプの例題解説
  » 三平方の定理の逆
p.187 説明しよう2つの正方形の面積の和は、\(a^2+b^2\)
また、\(\triangle {\rm BCE}\) において、\({\rm BC}=a~,~{\rm EC}=b\) であるので、
三平方の定理より、
 \({\rm BE}^2=a^2+b^2\)
また、\({\rm BE}\) を1辺とする正方形の面積は、
 \({\rm BE\times BE}={\rm BE}^2=a^2+b^2\)
よって、\({\rm BE}\) がその線分となる

■ 同じタイプの例題解説
  » 三平方の定理の逆

練習問題

p.187 練習問題 1 ア \(4\)  イ \(12\)  ウ \(15\)
 エ \(10\sqrt{2}\)  オ \(5\sqrt{3}\)

■ 同じタイプの例題解説
  » 直角三角形と三平方の定理
p.187 練習問題 2 \(7\sqrt{5}~{\rm cm}\)

■ 同じタイプの例題解説
  » 直角三角形と三平方の定理
p.187 練習問題 3 \(10~{\rm cm}~,~2\sqrt{7}~{\rm cm}\)

■ 同じタイプの例題解説
  » 直角三角形と三平方の定理

 



2節 三平方の定理の利用

 
1 三平方の定理の利用

p.189 問1\(\begin{split}~~~3.776~,~3.776~,~6.378\end{split}\)
\(\begin{split}~~~48180.91\cdots~,~220\end{split}\)

■ 同じタイプの例題解説
  » 図形と三平方の定理
p.190 問2左下の目盛りから地図上での \(220~{\rm km}\) を測りとり、富士山を中心としてコンパスで円をかく。

■ 同じタイプの例題解説
  » 図形と三平方の定理
p.191 問3 高さ \(2\sqrt{3}~{\rm cm}\)、面積 \(4\sqrt{3}~{\rm cm}^2\)

■ 同じタイプの例題解説
  » 図形と三平方の定理
p.192 説明しよう正方形の1辺の長さを \(a\) とすると、
\(90^\circ~,~45^\circ~,~45^\circ\) の直角三角形の斜辺は三平方の定理より、
\(\begin{split}~~~\sqrt{a^2+a^2}=\sqrt{2a^2}=\sqrt{2}a\end{split}\)
よって、\(1:1:\sqrt{2}\) となる


正三角形の1辺の長さを \(2b\) とすると、
\(90^\circ~,~30^\circ~,~60^\circ\) の直角三角形の斜辺は三平方の定理より、
\(\begin{split}~~~~~~\sqrt{(2b)^2-b^2}\end{split}\)
\(\begin{split}~=\sqrt{4b^2-b^2}=\sqrt{3b^2}=\sqrt{3}b\end{split}\)
よって、\(1:2:\sqrt{3}\) となる

■ 同じタイプの例題解説
  » 特別な直角三角形
p.192 問4\(\begin{split}{\small (1)}~x=3\sqrt{2}~{\rm cm}\end{split}\)
\(\begin{split}{\small (2)}~x=8~{\rm cm}~,~y=4\sqrt{3}~{\rm cm}\end{split}\)

■ 同じタイプの例題解説
  » 特別な直角三角形
p.192 問5\(\begin{split}~~~{\rm AB}=6\sqrt{2}~{\rm cm}~,~{\rm BC}=6\sqrt{2}~{\rm cm}\end{split}\)
\(\begin{split}~~~{\rm AD}=8\sqrt{3}~{\rm cm}~,~{\rm CD}=4\sqrt{3}~{\rm cm}\end{split}\)

■ 同じタイプの例題解説
  » 特別な直角三角形
p.193 問6\(\begin{split}~~~2\sqrt{7}~{\rm cm}\end{split}\)

■ 同じタイプの例題解説
  » 円と三平方の定理
p.193 問7\(\begin{split}~~~2\sqrt{5}~{\rm cm}\end{split}\)

■ 同じタイプの例題解説
  » 円と三平方の定理
p.194 問8\(\begin{split}{\small (1)}~\sqrt{53}\end{split}\)  \(\begin{split}{\small (2)}~5\sqrt{2}\end{split}\)  \(\begin{split}{\small (3)}~10\end{split}\)

■ 同じタイプの例題解説
  » 座標上の2点間の距離
p.195 問9\(\begin{split}~~~2\sqrt{3}~{\rm cm}\end{split}\)

■ 同じタイプの例題解説
  » 立体と三平方の定理
p.196 問10\(\begin{split}~~~72\sqrt{2}~{\rm cm}^2\end{split}\)

■ 同じタイプの例題解説
  » 角錐や円錐と三平方の定理
p.196 問11 高さ \(7~{\rm cm}\)、体積 \(\begin{split}{\frac{\,448\,}{\,3\,}}~{\rm cm}^3\end{split}\)

■ 同じタイプの例題解説
  » 角錐や円錐と三平方の定理
p.197 説明しよう1辺の長さ \(1\) の正方形の対角線の長さが \(\sqrt{2}\) より、半径 \(\sqrt{2}\) の円をかき、数直線との交点が \(\sqrt{2}\) を表す点の位置となる


横の長さ \(\sqrt{2}\)、縦の長さ \(1\) の長方形の対角線の長さが \(\sqrt{3}\) より、半径 \(\sqrt{3}\) の円をかき、数直線との交点が \(\sqrt{3}\) を表す点の位置となる


横の長さ \(2\)、縦の長さ \(1\) の長方形の対角線の長さが \(\sqrt{5}\) より、半径 \(\sqrt{5}\) の円をかき、数直線との交点が \(\sqrt{5}\) を表す点の位置となる


横の長さ \(\sqrt{5}\)、縦の長さ \(1\) の長方形の対角線の長さが \(\sqrt{6}\) より、半径 \(\sqrt{6}\) の円をかき、数直線との交点が \(\sqrt{6}\) を表す点の位置となる


横の長さ \(\sqrt{6}\)、縦の長さ \(1\) の長方形の対角線の長さが \(\sqrt{7}\) より、半径 \(\sqrt{7}\) の円をかき、数直線との交点が \(\sqrt{7}\) を表す点の位置となる

■ 同じタイプの例題解説
  » 図形と三平方の定理

練習問題

p.197 練習問題 1 \(8\sqrt{5}~{\rm cm}^2\)

■ 同じタイプの例題解説
  » 図形と三平方の定理
p.197 練習問題 2 \(6\sqrt{2}~{\rm cm}\)

■ 同じタイプの例題解説
  » 円と三平方の定理
p.197 練習問題 3 \(10\sqrt{2}~{\rm cm}\)

■ 同じタイプの例題解説
  » 角錐や円錐と三平方の定理
p.197 練習問題 4 高さ \(3\sqrt{5}~{\rm cm}\)、体積 \(36\sqrt{5}\pi~{\rm cm}^3\)

■ 同じタイプの例題解説
  » 角錐や円錐と三平方の定理

 



次のページ「8章 標本調査とデータの活用」

タイトルとURLをコピーしました