オンライン家庭教師生徒募集中!詳しくはこちらから!

【問題一覧】中1|平面図形

このページは「中学数学1 平面図形」の問題一覧ページとなります。解説の見たい単元名がわからないときは、こちらのページから類題を探しましょう!
また、「解答を見る」クリックすると答えのみ表示されます。問題演習としても使えるようになっています。

 

【問題一覧】中学数学1 平面図形

平面上の図形の表し方

問題

\({\small (1)}~\)2点 \({\rm A~,~B}\) について、次のものを図で表せ。
① 直線 \({\rm AB}\)    ② 線分 \({\rm AB}\)
③ 半直線 \({\rm AB}\)   ④ 半直線 \({\rm BA}\)


\({\small (2)}~\)次の問いに答えよ。
① 2点 \({\rm A~,~B}\) 間の距離を記号で表せ。
② 2つの線分 \({\rm AB~,~CD}\) の長さが等しいことを記号で表せ。


\({\small (3)}~\)次の問いに答えよ。
① 図のような角を3つの表し方で表せ。

② 角 \({\rm A}\) と角 \({\rm B}\) の大きさが等しいことを記号で表せ。
③ 3点 \({\rm A~,~B~,~C}\) を頂点とする三角形を記号で表せ。


\({\small (4)}~\)次の問いに答えよ。
① 2直線 \({\rm AB~,~CD}\) が垂直に交わることを記号で表せ。また、このとき一方の直線を他の直線の何というか答えよ。
② 次の図で、点 \({\rm C}\) と直線 \({\rm AB}\) との距離をア〜ウから選べ。

③ 2直線 \({\rm AB~,~CD}\) が平行であることを記号で表せ。

[ 解答を見る ]

【解答】
\({\small (1)}~\)
 ① 

 ② 

 ③ 

 ④ 

\({\small (2)}~\)
 ① \({\rm AB}\)
 ② \({\rm AB=CD}\)
\({\small (3)}~\)
 ① \(\angle{\rm ABC}~,~\angle{\rm B}~,~\angle b\)
 ② \(\angle{\rm A}=\angle{\rm B}\)
 ③ \(\triangle {\rm ABC}\)
\({\small (4)}~\)
 ① \({\rm AB\perp CD}\)
  一方の直線を他の直線の垂線
 ② イ
 ③ \({\rm AB\,//\, CD}\)


平面上の図形の表し方
今回の問題は「平面上の図形の表し方」です。 \(~\)数研出版 これからの数学1 p.159~161...

 

図形の平行移動

問題

図の \(\triangle {\rm ABC}\) と矢印 \({\rm PQ}\) について、次の問いに答えよ。

\({\small (1)}~\)\(\triangle {\rm ABC}\) を矢印 \({\rm PQ}\) の方向に線分 \({\rm PQ}\) の長さだけ平行移動させた \(\triangle {\rm A’B’C’}\) をかけ。


\({\small (2)}~\)\(\triangle {\rm ABC}\) と平行移動させた \(\triangle {\rm A’B’C’}\) について、3つの線分 \({\rm AA’~,~BB’~,~CC’}\) の関係を答えよ。

[ 解答を見る ]

【解答】
\({\small (1)}~\)

\({\small (2)}~\)どれも平行で長さが等しい
 \({\rm AA’\,//\,BB’\,//\,CC’}\)


 \({\rm AA’=BB’=CC’}\)


図形の平行移動
今回の問題は「図形の平行移動」です。 \(~\)数研出版 これからの数学1 p.164 問2~3 \...

 

図形の回転移動

問題

次の問いに答えよ。


\({\small (1)}~\)図の \(\triangle {\rm A’B’C’}\) は \(\triangle {\rm ABC}\) を点 \({\rm O}\) を中心として、反時計回りに \(90^\circ\) だけ回転移動させて図形である。

① 線分 \({\rm OA}\) と \({\rm OA’}\)、線分 \({\rm OB}\) と \({\rm OB’}\)、線分 \({\rm OC}\) と \({\rm OC’}\) の長さについて、どのような関係か答えよ。
② \(\angle {\rm AOA’}~,~\angle {\rm BOB’}~,~\angle {\rm COC’}\)の大きさをそれぞれ求めよ。
③ \(\angle {\rm AOB}\) と \(\angle {\rm A’OB’}\) はどのような関係であるか答えよ。


\({\small (2)}~\)次の図の \(\triangle {\rm A’B’C’}\) は \(\triangle {\rm ABC}\) に対して、どのような関係にあるか答えよ。

[ 解答を見る ]

【解答】
\({\small (1)}~\)
 ① \(\begin{split}{\rm OA=OA’~,~OB=OB’~,~OC=OC’}\end{split}\)
 ② \(\begin{split}\angle {\rm AOA’}=\angle {\rm BOB’}=\angle {\rm COC’}=90^\circ\end{split}\)
 ③ \(\begin{split}\angle{\rm AOB}=\angle{\rm A’OB’}\end{split}\)


\({\small (2)}~\)点対称移動


図形の回転移動
今回の問題は「図形の回転移動」です。 \(~\)数研出版 これからの数学1 p.164~165 問4...

 

図形の対称移動

問題

\({\small (1)}~\)次の問いに答えよ。

① \(\triangle {\rm ABC}\) を直線 \(l\) を対称の軸として対称移動させた \(\triangle {\rm A’B’C’}\) をかけ。
② 直線 \(l\) と線分 \({\rm AA’}\) の交点を何というか答えよ。また、線分 \({\rm AA’}\) に対して直線 \(l\) を何というか答えよ。


\({\small (2)}~\)次の図の、四角形 \({\rm ABCD}\) を線分 \({\rm AD}\) を対称の軸として対称移動させた図形をかけ。

[ 解答を見る ]

【解答】
\({\small (1)}~\)
① 

② 中点、垂直二等分線


\({\small (2)}~\)


図形の対称移動
今回の問題は「図形の対称移動」です。 \(~\)数研出版 これからの数学1 p.165 問6~7 \...

 

図形の移動のまとめ

問題

正方形 \({\rm ABCD}\) を次の図のようにア〜クの8つの合同な直角二等辺三角形に分けた。

\({\small (1)}~\)次の条件の図形をア〜クから選べ。
① アを平行移動したときに重なる図形。
② アを平行移動したときに重なる図形。


\({\small (2)}~\)次の条件の図形をア〜クから選べ。
① アを線分 \({\rm PR}\) を対称の軸として、対称移動したときに重なる図形。
② アを線分 \({\rm SQ}\) を対称の軸として、対称移動したときに重なる図形。
③ アを線分 \({\rm AC}\) を対称の軸として、対称移動したときに重なる図形。


\({\small (3)}~\)次の条件の図形をア〜クから選べ。
① アを点 \({\rm O}\) を回転の中心として、時計回りに \(90^\circ\) 回転移動したときに重なる図形。
② アを点 \({\rm O}\) を回転の中心として、反時計回りに \(90^\circ\) 回転移動したときに重なる図形。
③ アを点 \({\rm O}\) を回転の中心として、点対称移動したときに重なる図形。

[ 解答を見る ]

【解答】
\({\small (1)}~\)
 ① エ   ② キ


\({\small (2)}~\)
 ① イ   ② カ   ③ ク


\({\small (3)}~\)
 ① キ   ② ウ   ③ オ


図形の移動のまとめ
今回の問題は「図形の移動のまとめ」です。 \(~\)数研出版 これからの数学1 p.166 問8~9...

 

垂直二等分線の作図

問題

次の問いに答えよ。
\({\small (1)}~\)次の線分 \({\rm AB}\) の垂直二等分線の作図をせよ。また、線分 \({\rm AB}\) の中点 \({\rm M}\) を作図せよ。

\({\small (2)}~\)次の図で、直線 \(l\) は線分 \({\rm CD}\) の垂直二等分線である。直線 \(l\) 上の点 \({\rm P}\) をとるとき、線分 \({\rm PC~,~PD}\) の関係を答えよ。

\({\small (3)}~\)次の図で、直線 \(m\) 上にあり、2点 \({\rm E~,~F}\) からの距離が等しい点 \({\rm R}\) の作図をせよ。

[ 解答を見る ]

【解答】
\({\small (1)}~\)

\({\small (2)}~{\rm PC=PD}\)


\({\small (3)}~\)


垂直二等分線の作図
今回の問題は「垂直二等分線の作図」です。 \(~\)数研出版 これからの数学1 p.170~171 ...

 



角の二等分線の作図

問題

次の問いに答えよ。


\({\small (1)}~\angle{\rm AOB}\) の二等分線を作図せよ。

\({\small (2)}~\angle{\rm COD}\) の二等分線を作図せよ。

[ 解答を見る ]

【解答】
\({\small (1)}~\)

\({\small (2)}~\)


角の二等分線の作図
今回の問題は「角の二等分線の作図」です。 \(~\)数研出版 これからの数学1 p.173 問2 \...

 

垂線の作図

問題

次の問いに答えよ。
\({\small (1)}\)点 \({\rm P}\) を通る直線 \(l\) の垂線を作図せよ。

\({\small (2)}~\)点 \({\rm Q}\) を通る直線 \(l\) の垂線を作図せよ。

[ 解答を見る ]

【解答】
\({\small (1)}\)

\({\small (2)}\)

【別解】


垂線の作図
今回の問題は「垂線の作図」です。 \(~\)数研出版 これからの数学1 p.175 問3 \(~\)...

 

円とおうぎ形

問題

\({\small (1)}~\)次の問いに答えよ。

① 円周の点 \({\rm A}\) から点 \({\rm B}\) までの部分を何というか答えよ。また、記号で表せ。
② 線分 \({\rm AB}\) を何というか答えよ。
③ \(\angle{\rm AOB}\) を何というか答えよ。


\({\small (2)}~\)次の問いに答えよ。

① 弦 \({\rm CD}\) が直径のとき、\(\overset{\frown}{\rm CD}\) に対する中心角を答えよ。
② 弦 \({\rm AB}\) と直径 \({\rm CD}\) の関係を答えよ。


\({\small (3)}~\)次の問いに答えよ。

① 円と2つの半径とその弧で囲まれた図形を何というか答えよ。
② 2つの半径のつくる角を何というか答えよ。

[ 解答を見る ]

【解答】
\({\small (1)}~\)
 ① 弧 \({\rm AB}\)、\(\overset{\frown}{\rm AB}\)
 ② 弦 \({\rm AB}\)
 ③ \(\overset{\frown}{\rm AB}\) に対する中心角


\({\small (2)}~\)
 ① \(180^\circ\)
 ② 直径 \({\rm CD}\) は弦 \({\rm AB}\) の垂直二等分線


\({\small (3)}~\)
 ① おうぎ形
 ② おうぎ形の中心角


円とおうぎ形
今回の問題は「円とおうぎ形」です。 \(~\)数研出版 これからの数学1 p.178 / p.211...

 

円とおうぎ形の計量

問題

次の問いに答えよ。


\({\small (1)}~\)半径 \(3~{\rm cm}\) の円について、次のものを求めよ。
 ① 円周の長さ \({\rm cm}\)
 ② 円の面積 \({\rm cm}^2\)


\({\small (2)}~\)半径 \(4~{\rm cm}\)、中心角 \(45^\circ\) のおうぎ形について、次のものを求めよ。
 ① 弧の長さ \({\rm cm}\)
 ② おうぎ形の面積 \({\rm cm}^2\)


\({\small (3)}~\)半径 \(6~{\rm cm}\)、中心角 \(120^\circ\) のおうぎ形について、次のものを求めよ。
 ① 弧の長さ \({\rm cm}\)
 ② おうぎ形の面積 \({\rm cm}^2\)


\({\small (4)}~\)半径 \(8~{\rm cm}\)、弧の長さ \(4\pi~{\rm cm}\) のおうぎ形について、次のものを求めよ。
 ① 中心角の大きさ
 ② おうぎ形の面積 \({\rm cm}^2\)

[ 解答を見る ]

【解答】
\({\small (1)}~\)
 ① \(6\pi~{\rm cm}\)
 ② \(9\pi~{\rm cm}^2\)


\({\small (2)}~\)
 ① \(\pi~{\rm cm}\)
 ② \(2\pi~{\rm cm}^2\)


\({\small (3)}~\)
 ① \(4\pi~{\rm cm}\)
 ② \(12\pi~{\rm cm}^2\)


\({\small (4)}~\)
 ① 中心角 \(90^\circ\)
 ② \(16\pi~{\rm cm}^2\)


円とおうぎ形の計量
今回の問題は「円とおうぎ形の計量」です。 \(~\)数研出版 これからの数学1 p.213~215 ...

 

円と接線

問題

次の問いに答えよ。


\({\small (1)}~\)円と直線が1点だけを共有するとき、

① この円 \({\rm O}\) と直線 \(l\) の関係は何というか答えよ。
② 直線 \(l\) を何というか答えよ。
③ 点 \({\rm P}\) を何というか答えよ。
④ 直線 \(l\) と半径 \({\rm OP}\) の関係を何というか答えよ。


\({\small (2)}~\)次の図の点 \({\rm P}\) が接点となるように、接線を作図せよ。

[ 解答を見る ]

【解答】
\({\small (1)}~\)
 ① 直線 \(l\) は円 \({\rm O}\) に接する
 ② 直線 \(l\) は接線
 ③ 点 \({\rm P}\) は接点
 ④ 接線 \(l\) は半径 \({\rm O}\) と垂直


\({\small (2)}~\)


円と接線
今回の問題は「円と接線」です。 \(~\)数研出版 これからの数学1 p.181 問3 \(~\)東...

 



タイトルとURLをコピーしました